The Estimation of Copulas: Theory and Practice

نویسندگان

  • Arthur Charpentier
  • Jean-David Fermanian
  • Olivier Scaillet
چکیده

INTRODUCTION Copulas are a way of formalising dependence structures of random vectors. Although they have been known about for a long time (Sklar (1959)), they have been rediscovered relatively recently in applied sciences (biostatistics, reliability, biology, etc). In finance, they have become a standard tool with broad applications: multiasset pricing (especially complex credit derivatives), credit portfolio modelling, risk management, etc. For example, see Li (1999), Patton (2001) and Longin and Solnik (1995). Although the concept of copulas is well understood, it is now recognised that their empirical estimation is a harder and trickier task. Many traps and technical difficulties are present, and these are, most of the time, ignored or underestimated by practitioners. The problem is that the estimation of copulas implies usually that every marginal distribution of the underlying random vectors must be evaluated and plugged into an estimated multivariate distribution. Such a procedure produces unexpected and unusual effects with respect to the usual statistical procedures: non-standard limiting behaviours, noisy estimations, etc (eg, see the discussion in Fermanian and Scaillet, 2005). In this chapter, we focus on the practical issues practitioners are faced with, in particular concerning estimation and visualisation. 1

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parameter Estimation of Some Archimedean Copulas Based on Minimum Cramér-von-Mises Distance

The purpose of this paper is to introduce a new estimation method for estimating the Archimedean copula dependence parameter in the non-parametric setting. The estimation of the dependence parameter has been selected as the value that minimizes the Cramér-von-Mises distance which measures the distance between Empirical Bernstein Kendall distribution function and true Kendall distribution functi...

متن کامل

Faster estimation of High-Dimensional Vine Copulas with Automatic Differentiation

Vine copula is an important tool in modeling dependence structures of continuousvalued random variables. The maximum likelihood estimation (MLE) for vine copulas has long been considered computationally difficult in higher dimensions, even in 10 or 20 dimensions. Current computational practice, including the implementation in the state-ofthe-art R package VineCopula, suffers from the bottleneck...

متن کامل

Construction of asymmetric multivariate copulas

In this paper we introduce two methods for the construction of asymmetric multivariate copulas. The …rst is connected with products of copulas. The second approach generalises the Archimedean copulas. The resulting copulas are asymmetric and may have more than two parameters in contrast to most of the parametric families of copulas described in the literature. We study the properties of the pro...

متن کامل

Lévy copulas: review of recent results

We review and extend the now considerable literature on Lévy copulas. First, we focus on Monte Carlo methods and present a new robust algorithm for the simulation of multidimensional Lévy processes with dependence given by a Lévy copula. Next, we review statistical estimation techniques in a parametric and a non-parametric setting. Finally, we discuss the interplay between Lévy copulas and mult...

متن کامل

Analysis of Dependency Structure of Default Processes Based on Bayesian Copula

One of the main problems in credit risk management is the correlated default. In large portfolios, computing the default dependencies among issuers is an essential part in quantifying the portfolio's credit. The most important problems related to credit risk management are understanding the complex dependence structure of the associated variables and lacking the data. This paper aims at introdu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006